
Morfessor Documentation
Release 2.0.4

Sami Virpioja and Peter Smit

Feb 15, 2018

Contents

1 License 3

2 General 5
2.1 Morfessor 2.0 Technical Report . 5
2.2 Terminology . 5
2.3 Citing . 5

3 Installation instructions 7
3.1 Installation from tarball or zip file . 7
3.2 Installation from PyPI . 7

4 Morfessor file types 9
4.1 Binary model . 9
4.2 Reduced Binary model . 9
4.3 Morfessor 1.0 style text model . 9
4.4 Text corpus file . 10
4.5 Word list file . 10
4.6 Annotation file . 10

5 Command line tools 11
5.1 morfessor . 11
5.2 morfessor-train . 13
5.3 morfessor-segment . 13
5.4 morfessor-evaluate . 14
5.5 Data format command line options . 14
5.6 Universal command line options . 15

6 Morfessor features 17
6.1 Batch training . 17
6.2 Online training . 17
6.3 Recursive training . 17
6.4 Local Viterbi training . 18
6.5 Random skips . 18
6.6 Random initialization . 18
6.7 Corpusweight (alpha) tuning . 18

7 Python library interface to Morfessor 19

i

7.1 IO class . 19
7.2 Model classes . 20
7.3 Evaluation classes . 24

8 Code Examples for using library interface 27
8.1 Segmenting new data using an existing model . 27
8.2 Testing type vs token models . 27
8.3 Testing different amounts of supervision data . 28

9 Indices and tables 29

Bibliography 31

Python Module Index 33

ii

Morfessor Documentation, Release 2.0.4

Note: The Morfessor 2.0 documentation is still a work in progress and contains some unfinished parts

Contents:

Contents 1

Morfessor Documentation, Release 2.0.4

2 Contents

CHAPTER 1

License

Copyright (c) 2012-2018, Sami Virpioja, Peter Smit, and Stig-Arne Grönroos. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the follow-
ing disclaimer in the documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGE.

3

Morfessor Documentation, Release 2.0.4

4 Chapter 1. License

CHAPTER 2

General

2.1 Morfessor 2.0 Technical Report

The work done in Morfessor 2.0 is described in detail in the Morfessor 2.0 Technical Report [TechRep]. The report is
available for download from http://urn.fi/URN:ISBN:978-952-60-5501-5.

2.2 Terminology

Unlike previous Morfessor implementations, Morfessor 2.0 is, in principle, applicable to any string segmentation task.
Thus we use terms that are not specific to morphological segmentation task.

The task of the algorithm is to find a set of constructions that describe the provided training corpus efficiently and
accurately. The training corpus contains a collection of compounds, which are the largest sequences that a single
construction can hold. The smallest pieces of constructions and compounds are called atoms.

For example, in morphological segmentation, compounds are word forms, constructions are morphs, and atoms are
characters. In chunking, compounds are sentences, constructions are phrases, and atoms are words.

2.3 Citing

The authors do kindly ask that you cite the Morfessor 2.0 techical report [TechRep] when using this tool in aca-
demic publications.

In addition, when you refer to the Morfessor algorithms, you should cite the respective publications where they have
been introduced. For example, the first Morfessor algorithm was published in [Creutz2002] and the semi-supervised
extension in [Kohonen2010]. See [TechRep] for further information on the relevant publications.

5

http://urn.fi/URN:ISBN:978-952-60-5501-5

Morfessor Documentation, Release 2.0.4

6 Chapter 2. General

CHAPTER 3

Installation instructions

Morfessor 2.0 is installed using setuptools library for Python. Morfessor can be installed from the packages available
on the Morpho project homepage and the Morfessor Github page, or can be directly installed from the Python Package
Index (PyPI).

The Morfessor packages are created using the current Python packaging standards, as described on http://docs.python.
org/install/. Morfessor packages are fully compatible with, and recommended to run in, virtual environments as
described on http://virtualenv.org.

3.1 Installation from tarball or zip file

The Morfessor 2.0 tarball and zip files can be downloaded from the Morpho project homepage (latest stable version)
or from the Morfessor Github page (all versions).

The tarball can be installed in two different ways. The first is to unpack the tarball or zip file and run:

python setup.py install

A second method is to use the tool pip on the tarball or zip file directly:

pip install morfessor-VERSION.tar.gz

3.2 Installation from PyPI

Morfessor 2.0 is also distributed through the Python Package Index (PyPI). This means that tools like pip and
easy_install can automatically download and install the latest version of Morfessor.

Simply type:

pip install morfessor

or:

7

http://morpho.aalto.fi
https://github.com/aalto-speech/morfessor/releases
https://pypi.python.org/pypi/Morfessor
https://pypi.python.org/pypi/Morfessor
http://docs.python.org/install/
http://docs.python.org/install/
http://virtualenv.org
http://morpho.aalto.fi
https://github.com/aalto-speech/morfessor/releases
https://pypi.python.org/pypi/Morfessor

Morfessor Documentation, Release 2.0.4

easy_install morfessor

To install the morfessor library and tools.

8 Chapter 3. Installation instructions

CHAPTER 4

Morfessor file types

4.1 Binary model

Warning: Pickled models are sensitive to bitrot. Sometimes incompatibilities exist between Python versions that
prevent loading a model stored by a different version. Also, next versions of Morfessor are not guaranteed to be
able to load models of older versions.

The standard format for Morfessor 2.0 is a binary model, generated by pickling the BaselineModel object. This ensures
that all training-data, annotation-data and weights are exactly the same as when the model was saved.

4.2 Reduced Binary model

A reduced Morfessor model contains only that information that is necessary for segmenting new words using (nbest)
viterbi segmentation. Reduced binary models much smaller that the full models, but no model modificating actions
can be performed.

4.3 Morfessor 1.0 style text model

Morfessor 2.0 also supports the text model files that are used in Morfessor 1.0. These files consists of one segmentation
per line, preceded by a count, where the constructions are separated by ‘ + ‘.

Specification:

<int><space><CONSTRUCTION>[<space>+<space><CONSTRUCTION>]*

Example:

9

Morfessor Documentation, Release 2.0.4

10 kahvi + kakku
5 kahvi + kilo + n
24 kahvi + kone + emme

4.4 Text corpus file

A text corpus file is a free format text-file. All lines are split into compounds using the compound-separator (default
<space>). The compounds then are split into atoms using the atom-separator. Compounds can occur multiple times
and will be counted as such.

Example:

kavhikakku kahvikilon kahvikilon
kahvikoneemme kahvikakku

4.5 Word list file

A word list corpus file contains one compound per line, possibly preceded by a count. If multiple entries of the same
word occur there counts are summed. If no count is given, a count of one is assumed (per entry).

Specification:

[<int><space>]<COMPOUND>

Example 1:

10 kahvikakku
5 kahvikilon
24 kahvikoneemme

Example 2:

kahvikakku
kahvikilon
kahvikoneemme

4.6 Annotation file

An annotation file contains one compound and one or more annotations per compound on each line. The separators
between the annotations (default ‘, ‘) and between the constructions (default ‘ ‘) are configurable.

Specification:

<compound> <analysis1construction1>[<analysis1constructionN>][,
→˓<analysis2construction1> [<analysis2constructionN>]*]*

Example:

kahvikakku kahvi kakku, kahvi kak ku
kahvikilon kahvi kilon
kahvikoneemme kahvi konee mme, kah vi ko nee mme

10 Chapter 4. Morfessor file types

CHAPTER 5

Command line tools

The installation process installs 4 scripts in the appropriate PATH.

5.1 morfessor

The morfessor command is a full-featured script for training, updating models and segmenting test data.

5.1.1 Loading existing model

-l <file> load Binary model

-L <file> load Morfessor 1.0 style text model

5.1.2 Loading data

-t <file>, --traindata <file> Input corpus file(s) for training (text or bz2/gzipped text; use ‘-‘ for stan-
dard input; add several times in order to append multiple files). Standard, all sentences are split on whitespace
and the tokens are used as compounds. The --traindata-list option can be used to read all input files
as a list of compounds, one compound per line optionally prefixed by a count. See Data format command line
options for changing the delimiters used for separating compounds and atoms.

--traindata-list Interpret all training files as list files instead of corpus files. A list file contains one compound
per line with optionally a count as prefix.

-T <file>, --testdata <file> Input corpus file(s) to analyze (text or bz2/gzipped text; use ‘-‘ for standard
input; add several times in order to append multiple files). The file is read in the same manner as an input corpus
file. See Data format command line options for changing the delimiters used for separating compounds and
atoms.

11

Morfessor Documentation, Release 2.0.4

5.1.3 Training model options

-m <mode>, --mode <mode> Morfessor can run in different modes, each doing different actions on the model.
The modes are:

none Do initialize or train a model. Can be used when just loading a model for segmenting new data

init Create new model and load input data. Does not train the model

batch Loads an existing model (which is already initialized with training data) and run Batch training

init+batch Create a new model, load input data and run Batch training. Default

online Create a new model, read and train the model concurrently as described in Online training

online+batch First read and train the model concurrently as described in Online training and after that retrain
the model using Batch training

-a <algorithm>, --algorithm <algorithm> Algorithm to use for training:

recursive Recursive as descirbed in Recursive training Default

viterbi Viterbi as described in Local Viterbi training

-d <type>, --dampening <type> Method for changing the compound counts in the input data. Options:

none Do not alter the counts of compounds (token based training)

log Change the count 𝑥 of a compound to log(𝑥) (log-token based training)

ones Treat all compounds as if they only occured once (type based training)

-f <list>, --forcesplit <list> A list of atoms that would always cause the compound to be split. By
default only hyphens (-) would force a split. Note the notation of the argument list. To have no force split
characters, use as an empty string as argument (-f ""). To split, for example, both hyphen (-) and apostrophe
(') use -f "-'"

-F <float>, --finish-threshold <float> Stopping threshold. Training stops when the decrease in
model cost of the last iteration is smaller then finish_threshold * #boundaries; (default ‘0.005’)

-r <seed>, --randseed <seed> Seed for random number generator

-R <float>, --randsplit <float> Initialize new words by random splitting using the given split proba-
bility (default no splitting). See Random initialization

--skips Use random skips for frequently seen compounds to speed up training. See Random initialization

--batch-minfreq <int> Compound frequency threshold for batch training (default 1)

--max-epochs <int> Hard maximum of epochs in training

--nosplit-re <regexp> If the expression matches the two surrounding characters, do not allow splitting (de-
fault None)

--online-epochint <int> Epoch interval for online training (default 10000)

--viterbi-smoothing <float> Additive smoothing parameter for Viterbi training and segmentation (default
0).

--viterbi-maxlen <int> Maximum construction length in Viterbi training and segmentation (default 30)

5.1.4 Saving model

-s <file> save Binary model

12 Chapter 5. Command line tools

Morfessor Documentation, Release 2.0.4

-S <file> save Morfessor 1.0 style text model

--save-reduced save Reduced Binary model

5.1.5 Examples

Training a model from inputdata.txt, saving a Morfessor 1.0 style text model and segmenting the test.txt set:

morfessor -t inputdata.txt -S model.segm -T test.txt

5.2 morfessor-train

The morfessor-train command is a convenience command that enables easier training for morfessor models.

The basic command structure is:

morfessor-train [arguments] traindata-file [traindata-file ...]

The arguments are identical to the ones for the morfessor command. The most relevant are:

-s <file> save binary model

-S <file> save Morfessor 1.0 style model

--save-reduced save reduced binary model

5.2.1 Examples

Train a morfessor model from a wordcount list in ISO_8859-15, doing type based training, writing the log to logfile
and saving them model as model.bin:

morfessor-train --encoding=ISO_8859-15 --traindata-list --logfile=log.log -s model.
→˓bin -d ones traindata.txt

5.3 morfessor-segment

The morfessor-segment command is a convenience command that enables easier segmentation of test data with a
morfessor model.

The basic command structure is:

morfessor-segment [arguments] testcorpus-file [testcorpus-file ...]

The arguments are identical to the ones for the morfessor command. The most relevant are:

-l <file> load binary model (normal or reduced)

-L <file> load Morfessor 1.0 style model

5.2. morfessor-train 13

Morfessor Documentation, Release 2.0.4

5.3.1 Examples

Loading a binary model and segmenting the words in testdata.txt:

morfessor-segment -l model.bin testdata.txt

5.4 morfessor-evaluate

The morfessor-evaluate command is used for evaluating a morfessor model against a gold-standard. If multiple models
are evaluated, it reports statistical significant differences between them.

The basic command structure is:

morfessor-evaluate [arguments] <goldstandard> <model> [<model> ...]

5.4.1 Positional arguments

<goldstandard> gold standard file in standard annotation format

<model> model files to segment (either binary or Morfessor 1.0 style segmentation models).

5.4.2 Optional arguments

-t TEST_SEGMENTATIONS, --testsegmentation TEST_SEGMENTATIONS

Segmentation of the test set. Note that all words in the gold-standard must be segmented

--num-samples <int> number of samples to take for testing

--sample-size <int> size of each testing samples

--format-string <format> Python new style format string used to report evaluation results. The following
variables are a value and and action separated with and underscore. E.g. fscore_avg for the average f-score.
The available values are “precision”, “recall”, “fscore”, “samplesize” and the available actions: “avg”, “max”,
“min”, “values”, “count”. A last meta-data variable (without action) is “name”, the filename of the model. See
also the format-template option for predefined strings.

--format-template <template> Uses a template string for the format-string options. Available templates
are: default, table and latex. If format-string is defined this option is ignored.

5.4.3 Examples

Evaluating three different models against a golden standard, outputting the results in latex table format::

morfessor-evaluate --format-template=latex goldstd.txt model1.bin model2.segm model3.
→˓bin

5.5 Data format command line options

--encoding <encoding> Encoding of input and output files (if none is given, both the local encoding and
UTF-8 are tried).

14 Chapter 5. Command line tools

Morfessor Documentation, Release 2.0.4

--lowercase lowercase input data

--traindata-list input file(s) for batch training are lists (one compound per line, optionally count as a prefix)

--atom-separator <regexp> atom separator regexp (default None)

--compound-separator <regexp> compound separator regexp (default ‘s+’)

--analysis-separator <str> separator for different analyses in an annotation file. Use NONE for only
allowing one analysis per line

--output-format <format> format string for –output file (default: ‘{analysis}\n’). Valid keywords are:
{analysis} = constructions of the compound, {compound} = compound string, {count} = count of the
compound (currently always 1), {logprob} = log-probability of the analysis, and {clogprob} = log-
probability of the compound. Valid escape sequences are \n (newline) and \t (tabular)

--output-format-separator <str> construction separator for analysis in –output file (default: ‘ ‘)

--output-newlines for each newline in input, print newline in –output file (default: ‘False’)

5.6 Universal command line options

--verbose <int> -v verbose level; controls what is written to the standard error stream or log file (default 1)

--logfile <file> write log messages to file in addition to standard error stream

--progressbar Force the progressbar to be displayed (possibly lowers the log level for the standard error stream)

--help -h show this help message and exit

--version show version number and exit

5.6. Universal command line options 15

Morfessor Documentation, Release 2.0.4

16 Chapter 5. Command line tools

CHAPTER 6

Morfessor features

All features below are described in a short format, mainly to guide making the right choice for a certain parameter.
These features are explained in detail in the Morfessor 2.0 Technical Report.

6.1 Batch training

In batch training, each epoch consists of an iteration over the full training data. Epochs are repeated until the model
cost is converged. All training data needed in the training needs to be loaded before the training starts.

6.2 Online training

In online training the model is updated while the data is being added. This allows for rapid testing and prototyping.
All data is only processed once, hence it is advisable to run Batch training afterwards. The size of an epoch is a
fixed, predefined number of compounds processed. The only use of an epoch for online training is to select the best
annotations in semi-supervised training.

6.3 Recursive training

In recursive training, each compound is processed in the following manner. The current split for the compound is
removed from the model and its constructions are updated accordingly. After this, all possible splits are tried, by
choosing one split and running the algorithm recursively on the created constructions.

In the end, the best split is selected and the training continues with the next compound.

17

Morfessor Documentation, Release 2.0.4

6.4 Local Viterbi training

In Local Viterbi training the compounds are processed sequentially. Each compound is removed from the corpus and
afterwards segmented using Viterbi segmentation. The result is put back into the model.

In order to allow new constructions to be created, the smoothing parameter must be given some non-zero value.

6.5 Random skips

In Random skips, frequently seen compounds are skipped in training with a random probability. As shown in the
Morfessor 2.0 Technical Report this speeds up the training considerably with only a minor loss in model performance.

6.6 Random initialization

In random initialization all compounds are split randomly. Each possible boundary is made a split with the given
probability.

Selecting a good random initialization parameter helps in finding local optima as long as the split probability is high
enough.

6.7 Corpusweight (alpha) tuning

An important parameter of the Morfessor Baseline model is the corpusweight (𝛼), which balances the cost of the
lexicon and the corpus. There are different options available for tuning this weight:

Fixed weight (--corpusweight) The weight is set fixed on the beginning of the training and does not change

Development set (--develset) A development set is used to balance the corpusweight so that the precision and
recall of segmenting the developmentset will be equal

Morph length (--morph-length) The corpusweight is tuned so that the average length of morphs in the lexicon
will be as desired

Num morph types (--num-morph-types) The corpusweight is tuned so that there will be approximate the num-
ber of desired morph types in the lexicon

18 Chapter 6. Morfessor features

CHAPTER 7

Python library interface to Morfessor

Morfessor 2.0 contains a library interface in order to be integrated in other python applications. The public members
are documented below and should remain relatively the same between Morfessor versions. Private members are
documented in the code and can change anytime in releases.

The classes are documented below.

7.1 IO class

class morfessor.io.MorfessorIO(encoding=None, construction_separator=’ + ’,
comment_start=’#’, compound_separator=’\s+’,
atom_separator=None, lowercase=False)

Definition for all input and output files. Also handles all encoding issues.

The only state this class has is the separators used in the data. Therefore, the same class instance can be used
for initializing multiple files.

format_constructions(constructions, csep=None, atom_sep=None)
Return a formatted string for a list of constructions.

read_annotations_file(file_name, construction_separator=’ ’, analysis_sep=’, ’)
Read a annotations file.

Each line has the format: <compound> <constr1> <constr2>. . . <constrN>, <constr1>. . . <constrN>, . . .

Yield tuples (compound, list(analyses)).

read_any_model(file_name)
Read a file that is either a binary model or a Morfessor 1.0 style model segmentation. This method can not
be used on standard input as data might need to be read multiple times

static read_binary_file(file_name)
Read a pickled object from a file.

read_binary_model_file(file_name)
Read a pickled model from file.

19

Morfessor Documentation, Release 2.0.4

read_corpus_file(file_name)
Read one corpus file.

For each compound, yield (1, compound_atoms). After each line, yield (0, ()).

read_corpus_files(file_names)
Read one or more corpus files.

Yield for each compound found (1, compound_atoms).

read_corpus_list_file(file_name)
Read a corpus list file.

Each line has the format: <count> <compound>

Yield tuples (count, compound_atoms) for each compound.

read_corpus_list_files(file_names)
Read one or more corpus list files.

Yield for each compound found (count, compound_atoms).

read_parameter_file(file_name)
Read learned or estimated parameters from a file

read_segmentation_file(file_name, has_counts=True, **kwargs)
Read segmentation file.

File format: <count> <construction1><sep><construction2><sep>. . . <constructionN>

static write_binary_file(file_name, obj)
Pickle an object into a file.

write_binary_model_file(file_name, model)
Pickle a model to a file.

write_lexicon_file(file_name, lexicon)
Write to a Lexicon file all constructions and their counts.

write_parameter_file(file_name, params)
Write learned or estimated parameters to a file

write_segmentation_file(file_name, segmentations, **kwargs)
Write segmentation file.

File format: <count> <construction1><sep><construction2><sep>. . . <constructionN>

7.2 Model classes

class morfessor.baseline.AnnotatedCorpusEncoding(corpus_coding, weight=None,
penalty=-9999.9)

Encoding the cost of an Annotated Corpus.

In this encoding constructions that are missing are penalized.

get_cost()
Return the cost of the Annotation Corpus.

set_constructions(constructions)
Method for re-initializing the constructions. The count of the constructions must still be set with a call to
set_count

20 Chapter 7. Python library interface to Morfessor

Morfessor Documentation, Release 2.0.4

set_count(construction, count)
Set an initial count for each construction. Missing constructions are penalized

update_count(construction, old_count, new_count)
Update the counts in the Encoding, setting (or removing) a penalty for missing constructions

update_weight()
Update the weight of the Encoding by taking the ratio of the corpus boundaries and annotated boundaries

class morfessor.baseline.AnnotationCorpusWeight(devel_set, threshold=0.01)
Class for using development annotations to update the corpus weight during batch training

update(model, epoch)
Tune model corpus weight based on the precision and recall of the development data, trying to keep them
equal

class morfessor.baseline.BaselineModel(forcesplit_list=None, corpusweight=None,
use_skips=False, nosplit_re=None)

Morfessor Baseline model class.

Implements training of and segmenting with a Morfessor model. The model is complete agnostic to whether it
is used with lists of strings (finding phrases in sentences) or strings of characters (finding morphs in words).

forward_logprob(compound)
Find log-probability of a compound using the forward algorithm.

Parameters compound – compound to process

Returns the (negative) log-probability of the compound. If the probability is zero, returns a number that is
larger than the value defined by the penalty attribute of the model object.

get_compounds()
Return the compound types stored by the model.

get_constructions()
Return a list of the present constructions and their counts.

get_cost()
Return current model encoding cost.

get_segmentations()
Retrieve segmentations for all compounds encoded by the model.

load_data(data, freqthreshold=1, count_modifier=None, init_rand_split=None)
Load data to initialize the model for batch training.

Parameters

• data – iterator of (count, compound_atoms) tuples

• freqthreshold – discard compounds that occur less than given times in the corpus
(default 1)

• count_modifier – function for adjusting the counts of each compound

• init_rand_split – If given, random split the word with init_rand_split as the proba-
bility for each split

Adds the compounds in the corpus to the model lexicon. Returns the total cost.

load_segmentations(segmentations)
Load model from existing segmentations.

The argument should be an iterator providing a count, a compound, and its segmentation.

7.2. Model classes 21

Morfessor Documentation, Release 2.0.4

make_segment_only()
Reduce the size of this model by removing all non-morphs from the analyses. After calling this method it
is not possible anymore to call any other method that would change the state of the model. Anyway doing
so would throw an exception.

segment(compound)
Segment the compound by looking it up in the model analyses.

Raises KeyError if compound is not present in the training data. For segmenting new words, use
viterbi_segment(compound).

static segmentation_to_splitloc(constructions)
Return a list of split locations for a segmented compound.

set_annotations(annotations, annotatedcorpusweight=None)
Prepare model for semi-supervised learning with given annotations.

tokens
Return the number of construction tokens.

train_batch(algorithm=’recursive’, algorithm_params=(), finish_threshold=0.005,
max_epochs=None)

Train the model in batch fashion.

The model is trained with the data already loaded into the model (by using an existing model or calling
one of the load_ methods).

In each iteration (epoch) all compounds in the training data are optimized once, in a random order. If
applicable, corpus weight, annotation cost, and random split counters are recalculated after each iteration.

Parameters

• algorithm – string in (‘recursive’, ‘viterbi’) that indicates the splitting algorithm used.

• algorithm_params – parameters passed to the splitting algorithm.

• finish_threshold – the stopping threshold. Training stops when the improvement
of the last iteration is smaller then finish_threshold * #boundaries

• max_epochs – maximum number of epochs to train

train_online(data, count_modifier=None, epoch_interval=10000, algorithm=’recursive’, algo-
rithm_params=(), init_rand_split=None, max_epochs=None)

Train the model in online fashion.

The model is trained with the data provided in the data argument. As example the data could come from a
generator linked to standard in for live monitoring of the splitting.

All compounds from data are only optimized once. After online training, batch training could be used for
further optimization.

Epochs are defined as a fixed number of compounds. After each epoch (like in batch training), the
annotation cost, and random split counters are recalculated if applicable.

Parameters

• data – iterator of (_, compound_atoms) tuples. The first argument is ignored, as every
occurence of the compound is taken with count 1

• count_modifier – function for adjusting the counts of each compound

• epoch_interval – number of compounds to process before starting a new epoch

• algorithm – string in (‘recursive’, ‘viterbi’) that indicates the splitting algorithm used.

• algorithm_params – parameters passed to the splitting algorithm.

22 Chapter 7. Python library interface to Morfessor

Morfessor Documentation, Release 2.0.4

• init_rand_split – probability for random splitting a compound to at any point for
initializing the model. None or 0 means no random splitting.

• max_epochs – maximum number of epochs to train

types
Return the number of construction types.

viterbi_nbest(compound, n, addcount=1.0, maxlen=30)
Find top-n optimal segmentations using the Viterbi algorithm.

Parameters

• compound – compound to be segmented

• n – how many segmentations to return

• addcount – constant for additive smoothing (0 = no smoothing)

• maxlen – maximum length for the constructions

If additive smoothing is applied, new complex construction types can be selected during the search. With-
out smoothing, only new single-atom constructions can be selected.

Returns the n most probable segmentations and their log-probabilities.

viterbi_segment(compound, addcount=1.0, maxlen=30)
Find optimal segmentation using the Viterbi algorithm.

Parameters

• compound – compound to be segmented

• addcount – constant for additive smoothing (0 = no smoothing)

• maxlen – maximum length for the constructions

If additive smoothing is applied, new complex construction types can be selected during the search. With-
out smoothing, only new single-atom constructions can be selected.

Returns the most probable segmentation and its log-probability.

class morfessor.baseline.ConstrNode(rcount, count, splitloc)

count
Alias for field number 1

rcount
Alias for field number 0

splitloc
Alias for field number 2

class morfessor.baseline.CorpusEncoding(lexicon_encoding, weight=1.0)
Encoding the corpus class

The basic difference to a normal encoding is that the number of types is not stored directly but fetched from the
lexicon encoding. Also does the cost function not contain any permutation cost.

frequency_distribution_cost()
Calculate -log[(M - 1)! (N - M)! / (N - 1)!] for M types and N tokens.

get_cost()
Override for the Encoding get_cost function. A corpus does not have a permutation cost

7.2. Model classes 23

Morfessor Documentation, Release 2.0.4

types
Return the number of types of the corpus, which is the same as the number of boundaries in the lexicon +
1

class morfessor.baseline.Encoding(weight=1.0)
Base class for calculating the entropy (encoding length) of a corpus or lexicon.

Commonly subclassed to redefine specific methods.

frequency_distribution_cost()
Calculate -log[(u - 1)! (v - u)! / (v - 1)!]

v is the number of tokens+boundaries and u the number of types

get_cost()
Calculate the cost for encoding the corpus/lexicon

permutations_cost()
The permutations cost for the encoding.

types
Define number of types as 0. types is made a property method to ensure easy redefinition in subclasses

update_count(construction, old_count, new_count)
Update the counts in the encoding.

class morfessor.baseline.LexiconEncoding
Class for calculating the encoding cost for the Lexicon

add(construction)
Add a construction to the lexicon, updating automatically the count for its atoms

get_codelength(construction)
Return an approximate codelength for new construction.

remove(construction)
Remove construction from the lexicon, updating automatically the count for its atoms

types
Return the number of different atoms in the lexicon + 1 for the compound-end-token

7.3 Evaluation classes

class morfessor.evaluation.EvaluationConfig(num_samples, sample_size)

num_samples
Alias for field number 0

sample_size
Alias for field number 1

class morfessor.evaluation.MorfessorEvaluation(reference_annotations)
Do the evaluation of one model, on one testset. The basic procedure is to create, in a stable manner, a number of
samples and evaluate them independently. The stable selection of samples makes it possible to use the resulting
values for Pair-wise statistical significance testing.

reference_annotations is a standard annotation dictionary: {compound => ([annoation1],..) }

24 Chapter 7. Python library interface to Morfessor

Morfessor Documentation, Release 2.0.4

evaluate_model(model, configuration=EvaluationConfig(num_samples=10, sample_size=1000),
meta_data=None)

Get the prediction of the test samples from the model and do the evaluation

The meta_data object has preferably at least the key ‘name’.

evaluate_segmentation(segmentation, configuration=EvaluationConfig(num_samples=10, sam-
ple_size=1000), meta_data=None)

Method for evaluating an existing segmentation

get_samples(configuration=EvaluationConfig(num_samples=10, sample_size=1000))
Get a list of samples. A sample is a list of compounds.

This method is stable, so each time it is called with a specific test_set and configuration it will return the
same samples. Also this method caches the samples in the _samples variable.

class morfessor.evaluation.MorfessorEvaluationResult(meta_data=None)
A MorfessorEvaluationResult is returned by a MorfessorEvaluation object. It’s purpose is to store the evaluation
data and provide nice formatting options.

Each MorfessorEvaluationResult contains the data of 1 evaluation (which can have multiple samples).

add_data_point(precision, recall, f_score, sample_size)
Method used by MorfessorEvaluation to add the results of a single sample to the object

format(format_string)
Format this object. The format string can contain all variables, e.g. fscore_avg, precision_values or any
item from metadata

class morfessor.evaluation.WilcoxonSignedRank
Class for doing statistical signficance testing with the Wilcoxon Signed-Rank test

It implements the Pratt method for handling zero-differences and applies a 0.5 continuity correction for the
z-statistic.

static print_table(results)
Nicely format a results table as returned by significance_test

significance_test(evaluations, val_property=’fscore_values’, name_property=’name’)
Takes a set of evaluations (which should have the same test-configuration) and calculates the p-value for
the Wilcoxon signed rank test

Returns a dictionary with (name1,name2) keys and p-values as values.

7.3. Evaluation classes 25

Morfessor Documentation, Release 2.0.4

26 Chapter 7. Python library interface to Morfessor

CHAPTER 8

Code Examples for using library interface

8.1 Segmenting new data using an existing model

import morfessor

io = morfessor.MorfessorIO()

model = io.read_binary_model_file('model.bin')

words = ['words', 'segmenting', 'morfessor', 'unsupervised']

for word in words:
print(model.viterbi_segment(word))

8.2 Testing type vs token models

import morfessor

io = morfessor.MorfessorIO()

train_data = list(io.read_corpus_file('training_data'))

model_types = morfessor.BaselineModel()
model_logtokens = morfessor.BaselineModel()
model_tokens = morfessor.BaselineModel()

model_types.load_data(train_data, count_modifier=lambda x: 1)
def log_func(x):

return int(round(math.log(x + 1, 2)))
model_logtokens.load_data(train_data, count_modifier=log_func)
model_tokens.load_data(train_data)

27

Morfessor Documentation, Release 2.0.4

models = [model_types, model_logtokens, model_tokens]

for model in models:
model.train_batch()

goldstd_data = io.read_annotations_file('gold_std')
ev = morfessor.MorfessorEvaluation(goldstd_data)
results = [ev.evaluate_model(m) for m in models]

wsr = morfessor.WilcoxonSignedRank()
r = wsr.significance_test(results)
WilcoxonSignedRank.print_table(r)

The equivalent of this on the command line would be:

morfessor-train -s model_types -d ones training_data
morfessor-train -s model_logtokens -d log training_data
morfessor-train -s model_tokens training_data

morfessor-evaluate gold_std morfessor-train morfessor-train morfessor-train

8.3 Testing different amounts of supervision data

28 Chapter 8. Code Examples for using library interface

CHAPTER 9

Indices and tables

• genindex

• modindex

• search

29

Morfessor Documentation, Release 2.0.4

30 Chapter 9. Indices and tables

Bibliography

[TechRep] Sami Virpioja, Peter Smit, Stig-Arne Grönroos, and Mikko Kurimo. Morfessor 2.0: Python Implemen-
tation and Extensions for Morfessor Baseline. Aalto University publication series SCIENCE + TECHNOLOGY,
25/2013. Aalto University, Helsinki, 2013. ISBN 978-952-60-5501-5.

[Creutz2002] Mathias Creutz and Krista Lagus. Unsupervised discovery of morphemes. In Proceedings of the Work-
shop on Morphological and Phonological Learning of ACL-02, pages 21-30, Philadelphia, Pennsylvania, 11 July,
2002.

[Kohonen2010] Oskar Kohonen, Sami Virpioja and Krista Lagus. Semi-supervised learning of concatenative mor-
phology. In Proceedings of the 11th Meeting of the ACL Special Interest Group on Computational Morphology
and Phonology, pages 78-86, Uppsala, Sweden, July 2010. Association for Computational Linguistics.

31

Morfessor Documentation, Release 2.0.4

32 Bibliography

Python Module Index

m
morfessor.baseline, 20
morfessor.evaluation, 24
morfessor.io, 19

33

Morfessor Documentation, Release 2.0.4

34 Python Module Index

Index

A
add() (morfessor.baseline.LexiconEncoding method), 24
add_data_point() (morfes-

sor.evaluation.MorfessorEvaluationResult
method), 25

AnnotatedCorpusEncoding (class in morfessor.baseline),
20

AnnotationCorpusWeight (class in morfessor.baseline),
21

B
BaselineModel (class in morfessor.baseline), 21

C
ConstrNode (class in morfessor.baseline), 23
CorpusEncoding (class in morfessor.baseline), 23
count (morfessor.baseline.ConstrNode attribute), 23

E
Encoding (class in morfessor.baseline), 24
evaluate_model() (morfes-

sor.evaluation.MorfessorEvaluation method),
24

evaluate_segmentation() (morfes-
sor.evaluation.MorfessorEvaluation method),
25

EvaluationConfig (class in morfessor.evaluation), 24

F
format() (morfessor.evaluation.MorfessorEvaluationResult

method), 25
format_constructions() (morfessor.io.MorfessorIO

method), 19
forward_logprob() (morfessor.baseline.BaselineModel

method), 21
frequency_distribution_cost() (morfes-

sor.baseline.CorpusEncoding method), 23
frequency_distribution_cost() (morfes-

sor.baseline.Encoding method), 24

G
get_codelength() (morfessor.baseline.LexiconEncoding

method), 24
get_compounds() (morfessor.baseline.BaselineModel

method), 21
get_constructions() (morfessor.baseline.BaselineModel

method), 21
get_cost() (morfessor.baseline.AnnotatedCorpusEncoding

method), 20
get_cost() (morfessor.baseline.BaselineModel method),

21
get_cost() (morfessor.baseline.CorpusEncoding method),

23
get_cost() (morfessor.baseline.Encoding method), 24
get_samples() (morfes-

sor.evaluation.MorfessorEvaluation method),
25

get_segmentations() (morfessor.baseline.BaselineModel
method), 21

L
LexiconEncoding (class in morfessor.baseline), 24
load_data() (morfessor.baseline.BaselineModel method),

21
load_segmentations() (morfessor.baseline.BaselineModel

method), 21

M
make_segment_only() (morfes-

sor.baseline.BaselineModel method), 21
morfessor.baseline (module), 20
morfessor.evaluation (module), 24
morfessor.io (module), 19
MorfessorEvaluation (class in morfessor.evaluation), 24
MorfessorEvaluationResult (class in morfes-

sor.evaluation), 25
MorfessorIO (class in morfessor.io), 19

N
num_samples (morfessor.evaluation.EvaluationConfig at-

35

Morfessor Documentation, Release 2.0.4

tribute), 24

P
permutations_cost() (morfessor.baseline.Encoding

method), 24
print_table() (morfessor.evaluation.WilcoxonSignedRank

static method), 25

R
rcount (morfessor.baseline.ConstrNode attribute), 23
read_annotations_file() (morfessor.io.MorfessorIO

method), 19
read_any_model() (morfessor.io.MorfessorIO method),

19
read_binary_file() (morfessor.io.MorfessorIO static

method), 19
read_binary_model_file() (morfessor.io.MorfessorIO

method), 19
read_corpus_file() (morfessor.io.MorfessorIO method),

19
read_corpus_files() (morfessor.io.MorfessorIO method),

20
read_corpus_list_file() (morfessor.io.MorfessorIO

method), 20
read_corpus_list_files() (morfessor.io.MorfessorIO

method), 20
read_parameter_file() (morfessor.io.MorfessorIO

method), 20
read_segmentation_file() (morfessor.io.MorfessorIO

method), 20
remove() (morfessor.baseline.LexiconEncoding method),

24

S
sample_size (morfessor.evaluation.EvaluationConfig at-

tribute), 24
segment() (morfessor.baseline.BaselineModel method),

22
segmentation_to_splitloc() (morfes-

sor.baseline.BaselineModel static method),
22

set_annotations() (morfessor.baseline.BaselineModel
method), 22

set_constructions() (morfes-
sor.baseline.AnnotatedCorpusEncoding
method), 20

set_count() (morfessor.baseline.AnnotatedCorpusEncoding
method), 20

significance_test() (morfes-
sor.evaluation.WilcoxonSignedRank method),
25

splitloc (morfessor.baseline.ConstrNode attribute), 23

T
tokens (morfessor.baseline.BaselineModel attribute), 22
train_batch() (morfessor.baseline.BaselineModel

method), 22
train_online() (morfessor.baseline.BaselineModel

method), 22
types (morfessor.baseline.BaselineModel attribute), 23
types (morfessor.baseline.CorpusEncoding attribute), 23
types (morfessor.baseline.Encoding attribute), 24
types (morfessor.baseline.LexiconEncoding attribute), 24

U
update() (morfessor.baseline.AnnotationCorpusWeight

method), 21
update_count() (morfes-

sor.baseline.AnnotatedCorpusEncoding
method), 21

update_count() (morfessor.baseline.Encoding method),
24

update_weight() (morfes-
sor.baseline.AnnotatedCorpusEncoding
method), 21

V
viterbi_nbest() (morfessor.baseline.BaselineModel

method), 23
viterbi_segment() (morfessor.baseline.BaselineModel

method), 23

W
WilcoxonSignedRank (class in morfessor.evaluation), 25
write_binary_file() (morfessor.io.MorfessorIO static

method), 20
write_binary_model_file() (morfessor.io.MorfessorIO

method), 20
write_lexicon_file() (morfessor.io.MorfessorIO method),

20
write_parameter_file() (morfessor.io.MorfessorIO

method), 20
write_segmentation_file() (morfessor.io.MorfessorIO

method), 20

36 Index

	License
	General
	Morfessor 2.0 Technical Report
	Terminology
	Citing

	Installation instructions
	Installation from tarball or zip file
	Installation from PyPI

	Morfessor file types
	Binary model
	Reduced Binary model
	Morfessor 1.0 style text model
	Text corpus file
	Word list file
	Annotation file

	Command line tools
	morfessor
	morfessor-train
	morfessor-segment
	morfessor-evaluate
	Data format command line options
	Universal command line options

	Morfessor features
	Batch training
	Online training
	Recursive training
	Local Viterbi training
	Random skips
	Random initialization
	Corpusweight (alpha) tuning

	Python library interface to Morfessor
	IO class
	Model classes
	Evaluation classes

	Code Examples for using library interface
	Segmenting new data using an existing model
	Testing type vs token models
	Testing different amounts of supervision data

	Indices and tables
	Bibliography
	Python Module Index

